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Abstract

Calibrated climate-based lighting simulation mod-
els of buildings perform an essential role in post-
occupancy evaluations (POE), such as annual fre-
quency assessments of daylighting quality and visual
discomfort. However, the role of lighting analysis is
temporally limited by instantaneous measurements or
limited in scale by requiring constant monitoring of
occupied spaces with expensive sensors. Building cal-
ibrated models is thus challenging due to limited in-
formation, short durations of access, the concurrent
presence of electric lighting and daylighting, and tran-
sient usage of dynamic shades of occupied spaces. In
this paper, the authors present a calibration process
to build annual daylighting and electric lighting simu-
lation models based on one-time field measurements,
exemplified through a dataset of 540 individual office
desks across 10 office spaces. The authors calibrated
lighting models to be reliable enough for assessing
the relationship of annualized climate-based daylight-
ing metrics (CBDMs) to participants long-term per-
ceptions of lighting quality. The proposed process
to build calibrated climate-based models for POE’s
based on one-time field measurements at each build-
ing is validated through comparing measured and
simulated illuminance data at every work desk and re-
sults are sufficiently positive with logarithmic relative
RMSE values of 4.3% and 6.8% and relative RMSE
values of 25.8% and 45.5% for horizontal and ver-
tical illuminances respectively. Vertical illuminance
was found to vary more with measured data due to
the uncertainty of monitor screen luminances. This
paper demonstrates that measured data through one-
time visits can be utilized to build reliable calibrated
lighting simulation models to integrate long-term an-
nual lighting results in post-occupancy evaluations.

Introduction

Simulating daylighting and electric lighting in digital
architecture models in various stages of design have
become quintessential for informing design decisions
to meet quantitative and qualitative lighting goals
by predicting building performance prior to construc-

tion. Post-occupancy evaluations (POE’s) of com-
pleted buildings and spaces close the loop by provid-
ing feedback on the end-quality of a design to the
building and construction industry who can assess if
the project brief was met as well as serve an impor-
tant role by allowing researchers to generate knowl-
edge of occupant well-being based on actual user ex-
periences.(Oseland (2007)) Most POE’s focus on in-
stantaneous measures of illuminance or visual com-
fort using High Dynamic Range (HDR) photography
techniques within a monitoring time period. How-
ever, architects, energy consultants, engineers, light-
ing designers and researchers designing for daylight
today use computer daylighting simulations and an-
nualized lighting measures (Reinhart and Fitz (2006))
and recently including climate-based daylighting met-
rics (CBDMs) and annual visual comfort analysis to
assess potential designs instead of static daylighting
metrics (Reinhart et al. (2006)). To truly ’close the
loop’, these annual daylighting metrics need to be
evaluated based on a comparison with overall user
perceptions of space and the annual lighting they ex-
perience. To this end, this manuscript describes a
process of calibrating daylight simulation models dur-
ing POE field studies which can be used to calculate
annual CBDMs as a component of building POE’s
based on short-term visits instead of long-term mon-
itoring. Having said that, the proposed methodology
does not aim to replace current POE methods but
rather to extend and refine the capabilities of POE’s
by correlating actual annual daylighting metrics to
the overall queried experiences of occupants.

Background

Many measurement-driven POE studies in the re-
search literature are based on instantaneous mea-
surements and do not utilize long-term monitoring
nor annual predictive data. Bear and Bell (1992)
measured illuminance, source luminances, surface re-
flectance, geometric factors and subjective informa-
tion for 471 participants as early as 1992. Parpairi
et al. (2002) measured luminance and illuminance val-
ues manually at offices and libraries. Dahlan et al.
(2009) measured discomfort glare metrics using High



Dynamic Range (HDR) photography along with il-
luminance and subjective information. Choi et al.
(2012) measured instantaneous luminance using HDR
photography and illuminance using a mobile sensor
cart. Hirning et al. (2013, 2014, 2017) measured dis-
comfort glare using HDR photography where pho-
tographs were taken from the occupant’s point of view
where participants filled out a short subjective sur-
vey. Mangkuto et al. (2017) used HDR photography
to measure luminance and glare metrics in a library
space with measures paired with subjective informa-
tion. In summary, for direct measurement POE stud-
ies, it is feasible to quickly collect a large number of
data from a diverse range of participants. However,
limitations do emerge—the vast majority of studies
collect limited seasonal or temporal data, localizing
the results at the specific point-in-time the measure-
ments are taken.

Another approach employed by researchers has been
to utilize long-term data monitoring in order to
gather a more holistic representation of POE par-
ticipant’s lighting experiences. Fan et al. (2009)
recorded HDR photographs and frequent subjective
information using a computer application for 5 occu-
pant workstations. Cameras were mounted as close
to the head position of the occupant as feasible,
which resulted in errors generally below 25% . Konis
(2013, 2014) recorded ambient environmental condi-
tions, HDR photographs, and subjective ratings on
a continuous scale. Drosou et al. (2016) installed
2 high-quality HDR camera capture setups in class-
rooms, monitoring their lighting performance every
10-minutes for an entire year. Limitations included
a period of data loss due to camera shutter failure
and a single, fixed viewing location not from an oc-
cupant point of view. Extrapolating from the above
studies, continuous measurement studies are limited
by the cost and maintenance of equipment, thereby
enhancing the quality of data per participant but lim-
iting the number of participants for which data can
be reasonably and affordably collected over a period
of time.

A third, but less utilized, approach is to em-
ploy daylighting simulations, often using a validated
Radiance-based engine such as DaysimWard (1994);
Reinhart and Walkenhorst (2001). Reinhart et al.
(2014) used quasi-calibrated CBDM results paired
with subjective data to identify annual lighting per-
formance levels that correlate with perceptions of
’daylit.’ Jakubiec and Reinhart (2016)used a day-
lighting model based on measured material proper-
ties, exacting geometric reconstructions, and specific
weather data to assess annual lighting and glare met-
rics at a 6-minute time interval, but the model’s cali-
bration was not checked with measurements, and con-
tributions from electric lighting were ignored. Bellia
et al. (2017) expressed the opinion that this approach
was not feasible due to the complexity and time com-

mitments of modeling data. Mardaljevic et al. (2016)
noted that CBDMs are difficult to validate in prac-
tice due to obstructions on the workplane where sen-
sors would ordinarily be placed for long-term mon-
itoring and that illuminance data is not ordinarily
a part of building management systems. They pro-
pose to use a continuous luminance camera to derive
illuminance on vertical surfaces in order to validate
CBDM illuminance calculations. Other researchers
have noted the importance of appropriate material
properties in simulations to achieve accurate results.
(Jakubiec (2016); Brembilla et al. (2015))

Methodology

In this section, the authors seek to showcase the work-
flow to obtain annual climate-based daylighting mod-
els from one-time measurements at any building and
location. Measurements at office desks of 540 oc-
cupants in 10 offices were recorded during the pe-
riod between October 2016 and August 2017. Cal-
ibrated climate-based daylighting models were then
built according to field measurements: HDR images,
illuminance and luminance measurements, material
reflectance measures, space measurements, and ex-
ternal weather data. Figure 1 explains the general
overall workflow. Computational scripts were writ-
ten to automate each process due to a large amount
of data.

Figure 1: Overall workflow for calibrating climate-
based daylighting models from single point-in-time
measurements

Field Measurements

Of the 10 offices measured, some occupy multiple
floors, and 2 offices are situated in the same build-
ing separated by 12 floors. Beyond formal and lay-
out differences, each office has different material fin-
ishes and luminaire selection. High Dynamic Range
(HDR) photographs, workplane, and vertical illumi-
nance, and luminance measurements from a neutral



(a) 1. Camera setup for HDR photography, 2. Vertical
illuminance measurement location, 3. Horizontal illumi-
nance measurement location

(b) Luminance measurement setup

Figure 2: Measurements and HDR photography setup

grey card were captured and recorded at each of the
540 occupants’ desks. Occupants were asked immedi-
ately preceding the measurements to fill out a short
5-minute subjective survey on their perceptions of in-
stantaneous and long-term lighting quality. Before
measurements are taken, occupants are asked to leave
their desk such that the camera and lighting sensors
can be positioned freely at the eye position and on
the workplane. Horizontal illuminance (lux) on the
desktop surface is measured once after the HDR pho-
tographs are taken. Figure 2 illustrates the position-
ing of the illuminance and luminance meters for the
respective measurements. Luminance measurements
(cd/m2) from a grey card are recorded with a lumi-
nance meter (Konica Minolta LS-100), and vertical
illuminance (lux) is recorded with an illuminance me-
ter (Konica Minolta Illuminance Meter T-10A or Il-
luminance Spectrophotometer CL-500A) before the
first exposure and after the last exposure of the HDR
photographs are captured, in front of the fisheye lens
from the occupant’s viewpoint. The average value
of the before and after luminance measurements are
used in calibrating the images, to account for minor
changes in lighting levels during the HDR capture.
If illuminance or luminance values differ significantly,
the image is discarded.

HDR Photography

HDR fisheye photographs were taken at each occu-
pant’s desk to capture luminance values from their
point of view shortly after filling out the subjective
survey, see Figure 3. The methods used are according
to the recommendations proposed by Inanici (2006);
Jakubiec et al. (2016). The occupant is asked to va-
cate their desk before the measurements start—see
Figure 2a. A full frame DSLR camera (Canon EOS
5D Mark III) with a fish-eye lens (Canon EF 8-15mm
f/4L Fisheye USM or Sigma 8mm f/3.5 EX DG Cir-
cular Fisheye Lens) was used with a stable tripod. A
series of 16 photographs with exposure times at an in-
terval of 1 stop from 8 sec. to 1/4000 sec. were taken.
The individual exposures were converted to the Ra-
diance angular fisheye (-vta) image projection (Ward
(1994)) based on measurements of the lens projec-
tions taken with a panoramic tripod head. The im-
ages are then cropped to a 180-degree opening angle
with a circular mask and resized to 800x800 pixels.
The series of photographs were then converted into
HDR images using Photosphere (Ward (2005)). Ap-
proximately half of the HDR images captured in this
study did not have a corresponding luminance mea-
surement. These images were calibrated based on ver-
tical illuminance measurements taken at the camera
lens. Images with a corresponding luminance mea-
surement were then calibrated in Photosphere manu-
ally using the luminance data measured on the grey
card. Finally, vignetting correction was applied to
the HDR photos to correct for light attenuation at
the edge of the fisheye photograph(Jakubiec et al.
(2016)).

Physical Measurements

A laser scanner (FARO FOCUS 3D X330) was used
to scan the interiors and exteriors of the office spaces
that act as a geometric reference for the precise con-
struction of a 3D model by approximating the interior
layout including dimensions and positions of furniture
and electric lighting, see Figure 4. The scan files were
processed into point clouds and finally used to build
a detailed surface model in Rhinoceros 3D (McNeel
and Associates (2017)). However, laser scanning is an
optional step and may be replaced by hand measure-
ments, or using as-built BIM-models after verifying
their measurements. The surface geometry created
in this step is converted to polygonal meshes and ex-
ported to the Radiance .rad format (Ward (1994)).

Measurement of Material Reflectance Data &
Translation to Radiance Material Definitions

Material reflectance data of surfaces were measured
using a spectrophotometer (Konica Minolta CM-
2600d Spectrophotometer) based on an average value



Figure 3: An example of HDR image collected from
each of the 10 office spaces measured

of three-point measurements across each surface ma-
terial type. Each material finish had two types of
reflectance recorded, Specular Component Included
(SCI) and Specular Component Excluded (SCE) re-
spectively which are both full-spectrum colorimetric
measurements. The material data was converted to
Radiance material definitions as described by Jaku-
biec (2016). Where the glazing transmittance infor-
mation is not obtainable, it was either measured if the
windows are operable or estimated from initial visual-
ization simulations. Where the glazing transmittance
was known, it was converted to transmissivity by mul-
tiplying by 1.09 (Jacobs (2012)). A generic monitor
model was used for all the desks, modeled according
to Jones and Reinhart (2017) but with modifications
to match the average observed screen luminances in
Singapore with a high-state pixel luminance of 125
cd/m2 and low-state pixel luminance of 33 cd/m2.
A generic roller blind with a direct normal trans-
mittance of 0.01, front reflectance of 0.37, back re-
flectance of 0.56 and diffuse transmittance of 0.2, and
transmittance that drops to zero at 84 degrees, was
used.

External Measurements

Global horizontal solar irradiation (W/m2) is mea-
sured in real-time from an existing weather station lo-
cated at the rooftop of the authors’ university campus
at 36 m above ground level with no urban obstruc-
tion, using a silicon pyranometer and recorded every

Figure 4: Example of 3D scan point cloud and screen
captures of furniture plan and luminaires (orange
rectangles)
5 minutes by a data logger. Global horizontal solar
irradiation was split using the Reindl et al. (1990)
method into direct-horizontal and diffuse-horizontal
irradiance. A customized Radiance .wea weather file
(Reinhart and Walkenhorst (2001)) was then created
for each office space back-dated one year from the
date of visit.

Validation of HDR Images

To validate the accuracy of the HDR images, which
will be used for glare analysis and point-in-time cal-
ibration of the daylighting model, measured verti-
cal illuminance, Emea, was compared to the total
pixel illuminance contribution from the equiangular
HDR images Ev, as calculated in equation 1. As
the HDR images with illuminance measurements were
calibrated to the measured illuminances, only the
HDR images that were calibrated through the lu-
minance measurements are included in this valida-
tion. The grey line illustrates the ideal calibration of
HDR images, and it is notable that the total pixel
illuminance contribution fell slightly below than the
sensor measured vertical illuminance for luminance-
calibrated images.

Ev =
∑

θp<90◦

Lpωp cos θp (1)

where Lp is the luminance (cd/m2) of the individual
pixel, p, ωP is the solid angle (str) of that pixel, and
θp is the incident angle from the pixel to the center of
the photograph. The authors then calculate the root
mean squared error (RMSE) between the HDR illu-
minance and sensor-measured illuminance with equa-
tion 2 as follows:

RMSE =

√∑
(Ev − Emea)2

n
(2)

where Ev is the total pixel illumination contribution
derived from n number of HDR images, Emea is the
measured vertical illuminance. The relative RMSE,
RMSErel, refers to the percentage deviation from the



mean while relative mean bias error MBErel is the
Mean Bias Error relative to the mean. Both were
calculated according to Equations 3 to 5:

RMSErel =
RMSE

Ēmea
(3)

MBE =

∑
(Ev − Emea)

n
(4)

MBErel =
MBE

Ēmea
(5)

where Ēmea is the mean of the measured vertical il-
luminances. RMSE on the logarithmic scale is also
calculated, as the photopic sensitivity response of the
human eye to lighting intensity is on a logarithmic
scale rather than on a linear basis. (Reinhart and
Andersen (2006)) Hence logRMSErel is also calcu-
lated as per Equations 6 to 7:

logRMSE =

√∑
(log10Ev − log10Emea)2

n
(6)

logRMSErel =
logRMSE

log10Ēmea
(7)

The results showed a RMSErel of 23.24% in linear
space, logRMSErel of 9.60% in logarithmic visual
space, a slight negative bias of -9.91% MBErel, where
MBE in linear space is -21.9lux.

Calibration of Electric Lighting

As the exact model and lamp selection of the lu-
minaires were not available, an appropriate IES file
(Committee et al. (1991)) was selected to be used
in the simulation models, based on luminaire dimen-
sions and photometric distributions observed in the
captured HDR images. After loading the IES file into
the lighting simulation model, the luminaires were lo-
cated as per the 3D scan data. An occupant’s view-
point was simulated using high-quality ambient Radi-
ance parameters, and the global horizontal irradiance
value that is recorded by the weather station nearest
to the time of field measurement was used as the in-
put for the Perez all-weather sky model (Perez et al.
(1993)) during a calculation. To keep daylight contri-
bution to a minimum, a viewpoint further away from
the facade was chosen when calibrating the photomet-
ric distribution and intensity of electric lighting data.
A scale factor is approximated and ies2rad was run
to multiply the brightness output of the luminaires.
This process was repeated until an appropriate scal-
ing factor was reached.

CBDM Simulation Data and IES Simulation
Data

Grid-based annual lighting simulations without roller
blinds and electric lighting were run for all 10 of-

fice spaces indicating the various daylighting condi-
tions due to the diverse building typologies, mate-
rials, floor plans, and building depths. Figure 5 il-
lustrates the variation of daylight experienced by the
participants in the 10 surveyed office spaces repre-
sented by Annual Mean Illuminance. A red line il-
lustrates a Daylight Autonomy value of [75%] at an
illuminance threshold of 300 lux. For validation pur-
poses, climate-based daylighting simulations were ran
using Daysim (Reinhart and Walkenhorst (2001)) for
each office space, with roller blinds, per 5-minute time
step using the custom weather data file generated for
each office space. Since light is additive, the sim-
ulated daylight and electric light illuminances were
simulated separately and are summed up to calculate
total simulated horizontal or vertical illuminance.

Figure 5: Annual Mean Illuminance and Daylight
Autonomy for all 10 offices simulated (without roller
blinds and electric lighting)

Results

After the iterative process of calibrating the electric
and daylighting portions of the lighting simulation
models (see Figure 1), the authors compared the ac-



Figure 6: Scatter plots of measured vs simulated hor-
izontal and vertical illuminance

curacy of the results with measurements by extracting
the point-in-time simulation data nearest to the time
of measurement for each of the 540 occupant desks
measured during the 13 month period of this study.
RMSErel values of 25.8% and 45.5% were achieved
between sensor measured illuminance and simulated
point-in-time illuminances horizontally and vertically
as illustrated in Figure 6. The grey line is a y = x
identity line representing the ideal calibration situa-
tion. Vertical illuminance deviates from the measured
illuminance more than that of horizontal illuminance.
Vertical RMSErel values are exasperated by the vari-
ety of monitor types and configurations measured at
various workstations where on/off status, the bright-
ness setting, monitor type, monitor size, and mon-
itor number vary wildly between participants; all of
these will have an impact on measured vertical illumi-
nance. Logarithmic differences are known to express

perceived lighting differences by the human eye better
than actual absolute differences in different lighting
situations. (Reinhart and Andersen (2006)) Hence,
the authors decided to use logRMSErel as a paired
validation measure of the CBDM daylighting mod-
els indicating how close calculations come to human
perceptual differences in addition to standard linear
lighting unit errors. In the base-10 logarithmic visual
space, the models had 4.3% and 6.8% logRMSErel
for horizontal and vertical illuminances respectively.
The overall MBE was 0.3 lux (0.0006%) and 61.8 lux
(23.3%) for horizontal and vertical simulated illumi-
nance respectively.

Figure 7: Comparison of calibrated HDR images and
simulated visualizations from the same viewpoint

Figure 7 compares two selected calibrated HDR
images to simulated visualizations using false-color
luminance images, which are representative of those
simulated during the calibration process. Differences
specifically in the monitor brightnesses can be
observed based on discrete user factors as mentioned
as a cause of high vertical errors in the previous
paragraph.

Discussion

The authors believe that sharing their experience
with the field measurement and calibration process
of the 10 models in this paper would be beneficial to
the reader. Although the accuracy of field-calibrated
models is not expected to surpass that of those in
controlled laboratory setups, it is still a sufficiently
reliable method to determine and detect lighting vari-
ations in a POE study. Problematic data points with
large discrete errors have to be identified and recti-



fied while calibrating the simulation models, as well
as correcting for global errors due to electric lighting.
In addition, some limitations in practice such as in-
dividual user differences in monitor screens, items in
the workspace, and shade use must be accepted. The
authors believe that the validation process presented
in this manuscript is important to accurately drive
POE results based on calibrated annual lighting sim-
ulations by nearly eliminating bias errors and min-
imizing relative errors. Six participant data points
were removed during data analysis due to horizon-
tal and vertical illuminance errors of more than 1,000
lx, which may be attributed to weather data inac-
curacies likely due to disparate cloud cover patterns
at specific times. These discrepancies are typical and
expected of field measurements, unlike precise labora-
tory measurements that can be controlled to a higher
level of accuracy. It is also sometimes difficult to ob-
tain information of actual glazing transmittances for
fixed glazing since they cannot be measured easily in
the field. Modeling directional and diffusing proper-
ties of complex glazing and roller blinds also present
challenges where no detailed goniophotometer mea-
surements exist. Where possible, the authors have
tried to obtain accurate information from the indi-
vidual building developers to increase the accuracy of
the models. In addition, the location of the weather
station may also cause discrepancies in the custom
sky models used to simulate the instantaneous light-
ing data used in calibrations due to global horizontal
irradiance being recorded from a different location on
the island up to 25 km away in the case of this study.
In the future, portable irradiance data loggers could
be utilized at least during the field measurement pe-
riod.

Conclusion

The proposed process to build calibrated climate-
based models for POE’s based on one-time field mea-
surements at each building is validated through com-
paring measured and simulated illuminance data and
the results are sufficiently positive with logRMSErel
values of 4.3% and 6.8% and RMSErel values of
25.8% and 45.5% for horizontal and vertical illumi-
nances. While 20% is often seen as a best-case vali-
dation result in the lighting community, the authors
suggest that the additional horizontal error observed
in this study is acceptable given the complex field
conditions and the fact that the errors only make up
a small logarithmic perceived logarithmic difference
in lighting. As occupied spaces are usually of lim-
ited access to researchers, the non-invasive method
presented here can allow reliable annual lighting in-
formation to be used for POE’s through short visits
instead of relying on long-term and invasive direct
monitoring data using illuminance sensors or HDR
photographs. As the proposed workflow does not re-
quire constant monitoring and is non-invasive, this

could also increase the willingness of participants to
engage in lighting POE studies.

The authors find that the proposed workflow of
building calibrated models of existing spaces opens
up possibilities of assessing long-term quantitative
lighting results after a short visit for measurements
that can be analyzed in correlation to subjective
occupant responses that are collected in the same
visit (Jakubiec et al. (2018)). It was found that
annual mean illuminance related to the general occu-
pants’ satisfaction to access to daylight. The authors
acknowledge that the proposed methodology may be
more complex than a simpler point-in-time measure-
ment, but building calibrated CBDM daylighting
models enables researchers to simulate annual day-
lighting metrics based on measured annual weather
data. At the same time, it is significantly cheaper
than long-term monitoring techniques due to fewer
demands of manpower and equipment. Predicted
lighting results from the design or construction
phase of the building may also be analyzed with the
post-occupancy results later on, for an additional
feedback loop to architects and lighting designers and
policymakers for lighting requirements in sustainable
building assessment criteria.
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