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Abstract 
We compare a new, novel lighting design workflow based 
on human photobiology with existing metrics for non-
visual lighting design. There are a variety of light 
simulation methods and a lineage of circadian system 
biological models, but they are not connected into a 
cohesive workflow. We applied this novel workflow to 
two design variables: window spectral transmittance and 
surface reflectance. This article reviews and compares 
existing frameworks of circadian design to our novel 
workflow in terms of material spectrum sensitivity and 
the resulting evaluation of architecture in terms of 
circadian health. Our results highlight how architectural 
design can directly impact an occupant’s circadian health. 
Our comparative analyses demonstrates how direct 
photobiology-driven alertness and health metrics differ 
from previous circadian design metrics.  
Key Innovations 

• Novel workflow based upon light’s impact on 
human photobiology-driven alertness and 
health. 

• Relationships and visual comparisons between 
various light simulation methods and design 
variables 

• Relationship between circadian health metrics 
and design variables   

Practical Implication 
Lighting simulation methods need to be validated as there 
are discrepancies in their treatment of the spectral 
qualities of materials. Circadian design metrics should 
consider the direct biological symptoms of the circadian 
system.  
 
Introduction 
The non-visual effects of light are mediated by 
intrinsically photosensitive retinal ganglion cells 
(ipRGCs) (Provencio et al., 2000) which have a different 
spectral sensitivity curve than the visual system. 
Currently, designers cannot capture the multidimensional 
contributions of light to instantaneous and daily 
physiological symptoms which are sensitive to the 
illuminance, history of light exposure, timing, spectrum, 
and homeostatic body rhythms in a single workflow.   
Previous work to develop a framework tends to utilize an 
illuminance threshold-based approach. Amundadottir et 

al.’s (2017) threshold was determined based on 824 lx of 
CIE D65 equivalent illuminance for 5 hours. Konis (2019) 
used 200 equivalent melanopic lux (EML) as the 
threshold to adhere to the WELL requirements at the time 
of his paper. The limitation of the simplified threshold 
approach is that it undervalues the timing of light 
exposure. Light can problematically delay melatonin 
onset or supress melatonin production, and light will have 
a greater advancing effect early in the morning rather than 
close to noon. Existing frameworks for evaluating 
building lighting design translate physical light 
measurements, irradiance or illuminance, to circadian 
equivalent values based on the sensitivity of ipRGCs. 
However, the non-visual system has many physiological 
effects that independently respond to light. A single 
circadian equivalent value (i.e., EML) does not capture 
the effect light has on people. 
Although daylighting outperforms artificial light in 
circadian efficacy (Pechacek et al, 2008), the ability to 
incorporate electric lighting into an evaluative model is 
important because most buildings have electric lighting. 
Electric lighting can be beneficial when daylight is not 
sufficient, and it can be harmful when light stimulus is 
provided at biologically disruptive times. All published 
architectural circadian lighting design models are based 
upon daylighting; therefore, they do not capture the 
negative effects of electric lighting at night (Pechacek et 
al., 2008; Amundadottir et al., 2017; Konis, 2019; Danell 
et al., 2020). This is a continued limitation to most 
threshold-based evaluation criteria that do not consider 
time of light exposure (Anderson et al., 2012; Mardaljevic 
et al., 2013). 
Anderson et al. (2012) and Mardaljevic et al. (2013) used 
a threshold but divided the day into three distinct periods 
to accommodate changing biological effects depending 
on exposure time: “circadian resetting” from 6:00-10:00, 
“alerting” from 10:00-18:00, and “light avoidance” from 
18:00-6:00. Thresholds were illuminance values that 
changed depending on the spectral power distribution of 
the light source derived from Cajochen et al. (2000) and 
Phipps-Nelson et al. (2003). The work of Anderson et al. 
(2012) also included a novel visualization technique to 
summarize circadian potential (CP) for each period of the 
day. CP is the percentage of time one viewpoint 
experiences levels above a threshold in a year. This annual 
approach is one of two main strategies to summarize the 
biological effects of light. However, it is limited to 
spectrally neutral spaces and is not spectrally accurate. 



 

 

Pechacek et al. (2008), Mardaljevic et al. (2013), Konis 
(2017), and Konis (2019) adopt an annual strategy. 
Konis’s (2019) annual model calculates EML from 
daylight illuminance with a conversion limited to three 
colour channels simulated using Lark (Inanici et al., 
2015).   
Kryzsztof (2006), Geisler-Moroder and Dür (2010), 
Inanici (2015), Amundadottir et al. (2017), and ALFA 
(Solemma, 2020) estimate circadian values from point-in-
time simulations. These studies provide detailed 
information including spectral information for a single 
viewpoint but are difficult to visualize for daily or annual 
outcomes. ALFA and Inancici et al.'s (2015), point-in-
time simulations expanded the number of colour channels 
to 81-channels and 9-channels respectively. 
Based on the results from experiments under tested light 
conditions, several frameworks in the medical field have 
been developed to predict alertness, sleepiness, 
performance, the amount of circadian phase shift per day, 
the time of peak melatonin concentration, and the percent 
of total melatonin suppression per day due to acute light 
exposure (Abeysuriya et al., 2018; Postnova, 2018; 
Tekieh et al., 2020).  These frameworks assume a time-
varying input of melanopic irradiance, and they describe 
biological rhythms and timing, but do not describe a 
workflow from simulating melanopic irradiance in a 
space to visualizing circadian system outputs in a design 
process.    
The aim of this paper is to compare a new, novel lighting 
design workflow based on human photobiology with 
existing metrics for non-visual lighting design. This 
comparative analysis will showcase how predicting 
alertness and health measures differs from previous work 
and impacts the evaluation of architecture.  The novel 
method, being published in a separate submission to the 
conference (Jakubiec and Alight, 2021), works by 
translating timeseries spectrally resolved light simulation 
data into photobiologically driven measures mediated by 
the response of ipRGCs in the human eye. These 
measures are used as input to a dynamic photobiological 
framework that accounts for light history, timing, 
spectrum, and homeostatic body rhythms. To demonstrate 
the utility of this process, the predicted non-visual 
biological effects (Abeysuriya et al., 2018; Postnova et 
al., 2018; Tekieh, 2020) of two design variables (window 
spectral transmittance and surface reflectance) are 
simulated. To the best of our knowledge, the novel 
workflow in this comparative analysis is the only one that 
predicts explicit biological effects of light and spectrum 
over time in daylit architectural spaces rather than 
circadian light potential. To illustrate the difference 
between the novel method and existing circadian design 
metrics, the design variables are also applied to the 
frameworks suggested by Mardaljevic et al. (2013), 
Amundadottir et al. (2017), and Konis’ (2019) Circadian 
Design Assist Tool (CDAT). We were interested in 
comparing how these models respond to variations in 
spectrum and light exposure and how they differ in the 
resulting evaluation of architectural design.  

Methods 
A ward based on the Ng Teng Fong hospital in Singapore 
(HOK) was constructed in the Rhinoceros 3D modelling 
software.  Ng Teng Fong has a floor plan shape and 
window orientation which aims to provide each bed with 
more daylight (Figure 3). The range of materials used for 
simulations are detailed in Table 1 in terms of their visible 
and ipRGC-related (or melanopic, named for the ipRGC 
photopigment) reflectance. The wall, ceiling, and floor 
materials were chosen to have similar visual reflectance, 
but different melanopic/photopic (M/P) ratios.  
For spectral glazing material data, a similar process was 
employed. Transmittance data was selected with similar 
visible transmittance levels but different M/P ratios using 
the LBNL Optics software tool (Lawrence Berkeley 
National Laboratory, 2019). The material and glazing 
properties and spectral plots are detailed in Table 1, 
Figure 1, and Figure 2.  

Table 1: Materials and Glazing Details. 

Material Visible 
Reflectance 

Melanopic 
Reflectance  

M/P 

High M/P 
          Wall 
          Ceiling 
          Floor 
Neutral M/P 
          Wall 
          Ceiling 
          Floor 
Low M/P 
          Wall 
          Ceiling 
          Floor 

 
49.68 
71.23 
14.71 
 
51.49 
71.01 
15.76 
 
51.99 
71.20 
15.79 

 
68.51 
78.06 
21.46 
 
51.92 
68.06 
15.27 
 
27.34 
50.33 
9.49 

 
1.38 
1.10 
1.46 
 
1.01 
0.97 
0.97 
 
0.53 
0.71 
0.60 

Glazing 5 mm VFloat 
Clear w/ 

Visible 
Transmittance 

Melanopic 
Transmittance 

M/P  

6mm Arctic Blue 
4mm Filtrasol 
6mm Optifloat Bronze 

44.2 
45.4 
41.2 

52.9 
46.0 
35.9 

1.20 
1.01 
0.87 

Figure 1: Glazing spectral Power Distribution (SPD). 
 



 

 

 
Figure 2: Material Spectral Power Distribution (SPD). 

In total, 9 hospital models (three material pallets, and 
three types of glazing) were simulated. All simulations are 
performed in the Toronto, Canada climate with no 
exterior obstructions. The windows face East. Twelve 
occupant locations, at the head of each bed, are simulated 
for each method. As seen in Figure 3, eight view 
directions are simulated for each location.   

Figure 3: Floor plan of Ng Teng Fong Hospital Ward 
with occupant locations and view directions.  

Light Simulation 
Light calculations are performed in ALFA, Lark (Inanici 
et al., 2015, Inanici, 2015), and using the methods 
proposed by Konis (2019) and Mardaljevic et al. (2013). 
All the methods use the spectral sensitivity curve 
recommended by Lucas et al. (2014), which is used to 
evaluate melanopic or ipRGC illuminances.  
EML was used to compare the existing methods because 
they are all currently based on EML, although ALFA and 
Lark will report spectral irradiances at 81- or 9-bands 
respectively. Melanopic irradiance (CIE S 026, 2018) is 
input for the novel method with biological modelling 
from Postnova (2018) and Tekieh (2020), derived from 
ALFA’s calculations. To avoid ipRGC saturation in a 
well-daylit space and to elucidate how the circadian 
health evaluations change with material variables, we 
halved the simulated irradiance for all calculations in this 
paper. 
The ALFA tool determines sky spectra based on physical 
atmospheric processes calculated using libRadtran 
(Mayer and Kylling, 2005). A sampling and interpolation 

strategy derived from the Lightsolve framework and the 
associated solar positions for Toronto (Anderson et al., 
2008; Kliendienst et al, 2008), determined the 
instantaneous simulation times. As detailed in Table 2, we 
ran 21 instantaneous simulations, seven simulations a day 
for both solstices and the spring equinox using a clear sky 
condition.  
For Lark, sky colour was determined based on Inanici et 
al. (2015) as before 9am and after 6pm 25000 K CCT, 
between 9am to 6pm we interpolated between 8000 K and 
6500 K (D65) with noon being 6500 K. The Excel 
Daylight Series Calculator (Munsell Color Science 
Laboratory, 2002) was used to generate the daylight 
spectral data from the sky Correlated Color Temperature 
(CCT). The same sampling and interpolation strategy that 
was used for ALFA was used to determine 21 
instantaneous simulations times for Lark and is recorded 
in Table 2 as well. Furthermore, the Lark simulations 
were run using four ambient bounces.    
The sky colour for the CDAT (Konis, 2019) was chosen 
based on sky condition: 25000K for 0% cloud cover, 
7000K for 10-50% cloud cover, and 5000K for 60-100% 
cloud cover. Because the CDAT (Konis, 2019) uses the 
standard climate files, we chose the clearest sky within 7 
days of the Lightsolve solar positions used for Lark and 
ALFA. These dates and times are in Table 2. We ran the 
CDAT simulations using four ambient bounces as well. 
Mardaljevic et al. (2013) converts sunlight into the D55 
‘circadian-equivalent’ illuminance depending on the sky 
condition from clear (D75) to overcast (D65). Like the 
CDAT, we chose the clearest sky within 7 days of the 
Lightsolve solar positions used for Lark and ALFA from 
the standard climate files. Simulation times are detailed 
in Table 2.  

Table 2: Simulation Times. 
Lark and ALFA CDAT and Mardaljevic et 

al. (2013) 
Month Day Hour Month Day Hour 

3 9 7.6 3 15 8 
3 9 9.2 3 15 9 
3 9 10.9 3 15 11 
3 9 12.5 3 15 13 
3 9 14.1 3 15 14 
3 9 15.7 3 15 16 
3 9 17.3 3 15 17 
6 7 5.8 6 9 6 
6 7 8.0 6 9 8 
6 7 10.1 6 9 10 
6 7 12.3 6 9 12 
6 7 14.4 6 9 14 
6 7 16.6 6 9 17 
6 7 18.8 6 9 19 
12 7 8.4 12 8 8 
12 7 9.6 12 8 10 
12 7 10.9 12 8 11 
12 7 12.2 12 8 12 
12 7 13.4 12 8 13 
12 7 14.7 12 8 15 
12 7 16 12 8 16 

 



 

 

To directly compare the sensitivity of lighting simulation 
results to design changes, Spearman rank-order 
correlations were calculated to determine the relationship 
between simulated M/P and our two design variables 
(material M/P reflectance and glazing M/P transmittance) 
for each method: Mardaljevic et al., 2014, the CDAT 
(Konis, 2019), Lark (Inanici et al., 2015), and ALFA. The 
material M/P reflectance and glazing M/P transmittance 
was ordered from low M/P ratio to high M/P ratio. Further 
Spearman rank-order correlation coefficients were 
calculated to explore the relationship of the difference 
between melanopic and photopic (M-P) and our two 
design variables. 
Circadian Health Evaluation 
Using the outputs from the light simulation methods, we 
followed the model by Amundadottir et al. (2017) which 
calculates “non-visual health potential” using the “non-
visual direct-response (nvRD) model”, Mardaljevic et al. 
(2013) which predicts potential for a “non-visual effect” 
(N-VE), and Konis (2019) which indicates the extent to 
which the WELL standard (2018) is met by daylight 
called the circadian frequency (CF). Post-processing of 
simulation data determined how these building 
evaluations relate to Abeysuriva et al. (2018), Postnova et 
al., (2018) and Tekieh’s (2020) predicted total melatonin 
suppression, mean alertness, and phase shift after two 
days in the simulated space. The modelling from Tekieh 
(2020) is an evolution from Abeysuriya et al. (2018) and 
Postnova et al. (2018) with 4100 K CCT illuminance 
converted to melanopic irradiance, instantaneous alerting 
for KSS, and refined melatonin dynamics. Each design 
variable (material M/P reflectance and glazing M/P 
transmittance) is also analyzed to see how the novel 
workflow responds to specific design changes and how 
design changes affect predicted alertness and health 
circadian measures. In our novel design method, the 
simulated human occupant is a young adult that is 
entrained to sleep from 24:00-6:00. Using Abeysuriva et 
al. (2018), Postnova et al., (2018) and Tekieh et al. (2020) 
modelling we simulated the non-visual effects of light on 
sleepiness, phase shifting, and percent melatonin 
suppression. These are converted to daily performance 
measures as detailed in another submission to the 
conference [redacted for review]. Subjective sleepiness is 
measured by the Karolinska Sleepiness Scale (KSS). KSS 
evaluates in a range from 1 (extremely alert) to 9 
(extremely sleepy, fighting sleep). Phase shifting is 
compared using the change in time of peak melatonin 
secretion in hours. As mentioned in the introduction, the 
inability to simulate artificial electric light is a limitation 
of most circadian design models. Because all of the other 
models are daylight-only, we have constrained our model 
to only assess daylight impacts as well in this paper; 
however, our other paper submitted to this conference 
investigates the combined effects of electric lighting and 
daylighting [redacted for review]. Since our novel method 
and Amundadottir et al. (2017) are daily metrics we 
directly compared the relationship between the two. The 
relationship between predicted biological effects (Tekieh, 
2020) and the raw nvRD score (Amundadottir et al., 2017) 

was explored using a Pearson correlation. We also 
analyzed the relationship between passing the 
Amundadottir et al. (2017) nvRD threshold (nvRD > 4.2) 
and the predicted biological effects with spearman rank 
correlations. Scores above the threshold were coded as 1 
and those below were coded as 0. To explore the 
relationship between the annual circadian health metrics, 
we directly compare the CDAT’s CF and Mardaljevic et 
al.’s (2013) N-VE for the “resetting”, “alerting”, and 
“avoidance” periods with Pearson correlations. Similar to 
our light simulation analysis, to compare the sensitivity of 
the circadian health metrics to our design changes we used 
spearman rank order correlations to determine the 
relationship between each method’s health metric(s) 
(“resetting” N-VE, “alerting” N-VE, “avoidance” N-VE, 
CF, nvRD, subjective sleepiness, phase shift, and 
melatonin suppression) and our two design variables 
(material M/P reflectance and glazing M/P transmittance).  
Results 
Light Simulation 
As presented in Table 3, the Mardaljevic et al. (2013) 
method there was no relationship between M/P 
illuminance ratio and any of the design variables (material 
M/P reflectance or glazing M/P transmittance). In Lark, 
CDAT, and ALFA there moderate (r > 0.4) to strong 
positive (r > 0.8) correlations between M/P and the design 
variables. ALFA had the strongest correlation between 
material M/P reflectance and M/P. Lark had the strongest 
correlation between glazing M/P transmittance and M/P. 
However, the differences between the correlation 
coefficients of Lark, CDAT, and ALFA were small.  
Figure 4 visualizes how the distribution of M/P 
illuminance ratio differs across material M/P reflectance 
and glazing M/P transmittance.  

Table 3: Spearman’s rank correlation coefficients of 
simulated M/P and design variables.  

 Simulation Method 
 Mardaljevic 

et al. (2013) 
Lark CDAT ALFA 

Material M/P 
Reflectance 

 ≈ 0 
 

.70** .66** .74** 

Glazing M/P 
Transmittance 

≈ 0 .40** .38** .39** 

** is significant at 0.01 level 
* is significant at 0.05 level 

 
Table 4: Spearman’s rank correlation coefficients of 

simulated M-P with design variables.  
 Simulation Method 
 Mardaljevic 

et al. (2013) 
Lark CDAT ALFA 

Material M/P 
Reflectance 

 -.06 
 

.55** .53** .59** 

Glazing M/P 
Transmittance 

.02 .45** .35** .40** 

** is significant at 0.01 level 
* is significant at 0.05 level 

 



 

 

When exploring the relationship of the difference between 
melanopic and photopic lux (M-P) with the design 
variables in Table 4, glazing type or material type were 
not correlated with M-P in the Mardaljevic et al. (2013) 
method. In Lark, CDAT, and ALFA, M-P was moderately 
correlated to material and glazing type. Similar to M/P, 
material type was most strongly correlated with M-P in 
ALFA, while glazing type was most correlated and M-P 
in Lark. Again, the difference was small between Lark, 
CDAT, and ALFA. Figure 5 visualizes how the 
distribution of M-P differs across material M/P 
reflectance and glazing M/P transmittance. 

 

 
Circadian Health Evaluation 
Because we found nvRD to be the most correlated with 
the design factors we tested, we also compared it to the 
predicted non-visual effects from the novel workflow. As 
see in Table 5, nvRD were moderately to strongly (0.4 < 
r < 0.76) correlated with simulated phase shift, subjective 
sleepiness (KSS), and melatonin suppression. The 
strength of relationship also varies between the type of 
circadian response. The strongest relationship is between 
nvRD and the phase shift of peak melatonin. The weakest 
relationship is between nvRD and subjective sleepiness. 
Naturally, this relationship becomes weaker when nvRD 

 
Figure 4: Distribution of Melanopic/Photopic (M/P) Illuminance Ratio for Light Simulation Methods. 

 
Figure 5: Distribution of the Difference Between Melanopic and Photopic Illuminance for Light Simulation Methods. 



 

 

is condensed into a pass-fail metric (whether nvRD ≥ 4.2 
or not). However, the relative strength of the relationship 
between circadian responses is similar with subjective 
sleepiness possessing the weakest relationship with nvRD 
as a pass-fail metric.  
 
Table 5: Correlation of raw nvRD score (Pearson) and 
threshold nvRD (Spearman’s rank order) with Tekieh et 

al (2020) circadian system responses. 
 Phase Shift Sleepiness 

(KSS) 
Melatonin 

Suppression 
nvRD (raw)  -0.76** -0.88** 0.61** 

nvRD 
(threshold) 

-0.20** -0.20** 0.13** 

** is significant at 0.01 level 
* is significant at 0.05 level 

In terms of the relationship between circadian health 
design metrics and our design parameters (Table 6), N-
VE scores for all periods were correlated with material 
M/P reflectance. However, the effect size of this 
relationship was not practical (r < 0.2). N-VE scores had 
no significant relationship with glazing M/P 
transmittance. CF were not significantly correlated with 
material type, and was positively correlation with glazing 
type but did not exhibit a practical effect. nvRD was 
positively correlated with material M/P reflectance and 
glazing M/P transmittance, with a slightly stronger 
relationship with glazing M/P transmittance than material 
M/P reflectance. The circadian symptoms (phase shift, 
sleepiness, and melatonin suppression) predicted using 

the novel workflow with Tekieh et al.’s (2020) biological 
model all had a positive correlation with material M/P 
reflectance and glazing M/P transmittance, although M/P 
material reflectance did not exhibit a practical effect 
(again, r < 0.2). Glazing type seemed to have a stronger 
relationship with the simulated symptoms than material 
type, but the effect size was barely practical. There was a 
small difference between the direct symptoms, but 
melatonin suppression had the weakest relationship with 
the design variables. Overall, nvRD score and the 
simulated symptoms had the strongest relationship with 
the design variables. Figure 6 displays box plots of the 
distribution for each circadian health metric with each 
design parameter setting.  
Discussion and Conclusion 
Compared to the other models, the M/P and M-P results 
of Mardaljevic et al. (2014) were less sensitive to design 
changes like material and glazing. We predict that this is 
the result of our methodology because we chose materials 
and glazing with similar visible reflectance or 
transmittance. The primary difference between the three 
material palettes and three glazing types was colour. 
Because the Mardaljevic et al. (2014) method does not 
weight by RGB channel, the M-P results were not 
affected, and M/P results were minimally affected by the 
colour of the architectural space. Mardaljevic et al. does 
show the increased circadian effects of more daylight 
based on unpublished data. As demonstrated here, 
ignoring the effects that interior surfaces and glazing may 
have on the spectral qualities of light can be a limitation, 

Table 6: Spearman’s rank correlation coefficients of circadian health metrics and design variables. 

 
 

“resetting” 
N-VE 

“alerting” 
N-VE 

“avoidance” 
N-VE 

CF  nvRD 
 

Phase 
Shift  

Sleepiness 
(KSS) 

Melatonin 
Suppression 

Material M/P 
Reflectance 

-0.09** -0.09** -0.09** .06 .15** -.14** -.16**- .08** 

Glazing M/P 
Transmittance 

.03 .03 .02 .12** .21** -.23** -.23** .17** 

** is significant at 0.01 level 
* is significant at 0.05 level 

 

 
 

Figure 6: Distributions of Non-Image Forming Lighting Metrics. 



 

 

especially when comparing between spaces with similar 
visible material reflectance and glazing transmittance. 
This limitation transferred to the N-VE response to 
material palette changes that resulted in no relationship or 
an extremely weak negative relationship with M/P 
material reflectance and transmittance.  
ALFA, Lark, and CDAT simulations showed similar 
results in terms of sensitivity to material reflectance 
spectrum and glass transmittance spectrum. ALFA was 
the most sensitive to material palette changes, followed 
by Lark and then CDAT. The succession is in line with 
the number of colour channels utilized in each method: 
ALFA utilizes 81-colour channels, Lark is 9-colour 
channels, and CDAT uses the 3-colour channel version of 
Lark. Geisler-Moroder and Dür (2009) found that the 
brightness and colours simulated in spaces with many 
interreflections were more accurate and distinct when 
using a method with more colour channels. Thus, the 
small differences between ALFA, Lark, and CDAT may 
be because increasing the number of colour channels 
prevents colours from mixing with each interreflection.   
Another possible explanation may be due to the method’s 
utilization of an ambient cache. Unlike the other methods, 
ALFA does not utilize an ambient cache so there is less 
interpolation between sensor points.  
Further research should aim to validate the assumptions 
made in each method regarding sky colour against 
physical measurements. One factor that was difficult to 
control in our simulations was sky color spectrum as 
ALFA’s is physics-based, Lark relies on user input, and 
CDAT and the Mardaljevic et al. (2013) method rely on 
sky classification methods.  
In terms of translating simulated light into circadian 
health metrics, this study demonstrates how previous 
approaches may not capture lights effect on health 
metrics. This study found that phase shifting, subjective 
sleepiness, and melatonin suppression do not respond the 
same way to design changes. This concept is also 
demonstrated by the varying correlation strength between 
nvRD and simulated biological symptoms. These results 
are sensible because the circadian system is complex with 
many different symptoms that respond independently to 
light. A singular circadian health design metric like the 
nvRD or CF may not be appropriate. Because circadian 
symptoms differ in their response to light, quantifying the 
likelihood that a lighting design will have a circadian 
effect as a single metric cannot capture light’s effect on 
the circadian system. This brings into question the 
practicality of metrics that determine the likelihood of a 
circadian response rather than each symptom of the NIF 
system. The relationship between NIF symptoms and 
nvRD became weaker when nvRD was condensed into a 
pass-fail metric.  
Due to the circadian system’s sensitivity to timing, 
categorizing the day into distinct periods may be a step 
towards circadian health design metrics that relate to 
biological symptoms. For example, the “resetting” and 
“avoidance” N-VE periods may have a stronger effect on 
melatonin suppression because the “alerting” period is 
during a time when melatonin is already naturally low. 

Nevertheless, each circadian response has its own natural 
cycle so determining how each circadian response is 
being affecting in each period of Anderson et al (20120) 
and Mardaljevic et al. (2013) is still obscure. For example, 
strong light in the “resetting” period leads to a phase 
advance whereas strong light in the “avoidance” period 
may cause a phase delay. Thus, a designer may predict 
that the models in this study cause a phase advance 
because there are strong N-VEs in the “resetting” period. 
Our novel method corroborates this prediction and is able 
to specify the phase advance in hours over a week of 
exposure. 
Simulating biological symptoms grants a more nuanced 
understanding of a building’s effect on a human 
occupant’s circadian system and may allow designers to 
make special considerations depending on the program of 
the project. For example, designers may want alertness for 
an office building or proper circadian entrainment in a 
long-term occupancy project.  
A limitation to this study is the absence of electric 
lighting. Due to the timing of light exposure, artificial 
light at night may cause phase shifting that is greater than 
the results of this study which focused on daylighting 
only. The “avoidance” period is particularly important 
when considering modern-day artificial lighting. For 
example, in this study’s purely daylit model, each distinct 
period is strongly and similarly correlated with single 
period metrics like the CDAT’s CF (Konis, 2019) and 
both methods offer similar information. However, strong 
nighttime light may lead to a drastically larger 
“avoidance” N-VE. The CDAT would simplify nighttime 
light to a greater circadian response overall without 
specifying the negative impact of light at night. Further 
research should aim to explore how circadian design 
methods respond to simulating artificial light. Another 
limitation is the models were not validated against 
physical measurements in the real world. Thus, the 
models were discussed in relation to each other and their 
accuracy may only be discussed speculatively based on 
previous research. A future direction would be to validate 
the lighting and circadian health results using physical 
measurements from the real world.  
Despite these limitations, the study highlights 
discrepancies between light simulation methods which 
are the foundation for simulating the circadian health of 
occupants. It also demonstrates the usefulness of utilizing 
circadian system models from medical research 
(Abeysuriya et al., 2018; Postnova et al., 2018; Tekieh et 
al., 2020) for a more refined and direct understanding of 
building design that promotes circadian health.  
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